1. 2 Stroke Tuning Software For Cars
  2. 2 Stroke Tuning Software Download
  3. Software For Tuning Cars

Millions of fluid and thermo-dynamic calculations are made by MOTA representing the conditions inside your two-stroke engine throughout it's complete operating cycle. No previous knowledge of the two-stroke cycle engine is required - just input the required data and then run MOTA to set in motion this powerful process. Antares auto tune realtime advanced. The new MOTA version 6.30 for Windows ® is now available. The world's leading 2-stroke engine simulation software available ready-to-run on your PC, at only AUD$265 (Australian Dollars) including GST and delivery within Australia. Or exported to most countries. Bimotion 2-stroke software has been commercially available and in professional use since 1991. Why you should buy Bimotion: - unique, modern, user friendly and in depth programs - very fast and efficient design tool. 2T Exhaust Calc - Ver 1.1.0 / 6th April 2019 2T Exhaust Calc is a Freeware program created to design a 2 Stroke engine performance exhaust system generally referred to as an 'Expansion Chamber'. Here is an overview of how two stroke motors work. Two stroke motors are more efficient that four strokes for a few reasons. 1 is the displacement, they generally have smaller combustion chambers, which means less fuel burned. 2 is the fact that they have fewer moving parts, which decreases the constant load on the engine, allowing it to burn the air-fuel mixture more efficiently, and reach.






Changing the power band of your 2t bike engine is easy when you know the basics. A lot of different aftermarket accessories are available for you to tune your bike

a two-stroke engine has less moving parts than a four-stroke engine, a two-stroke is a complex engine because it relies on gas dynamics. There are different phases taking place in the crankcase and in the cylinder bore at the same time. That is how a two-stroke engine completes a power cycle in only 360 degrees of crankshaft rotation compared to a four-stroke engine which requires 720 degrees of crankshaft rotation to complete one power cycle. These four drawings give an explanation of how a two-stroke engine works.
2 Stroke Tuning Software
1) Starting with the piston at top dead center (TDC 0 degrees) ignition has occurred and the gasses in the combustion chamber are expanding and pushing down the piston. This pressurizes the crankcase causing the reed valve to close. At about 90 degrees after TDC the exhaust port opens ending the power stroke. A pressure wave of hot expanding gasses flows down the exhaust pipe. The blow-down phase has started and will end when the transfer ports open. The pressure in the cylinder must blow-down to below the pressure in the crankcase in order for the unburned mixture gasses to flow out the transfer ports during the scavenging phase.
2) Now the transfer ports are uncovered at about 120 degrees after TDC. The scavenging phase has begun. Meaning that the unburned mixture gasses are flowing out of the transfers and merging together to form a loop. The gasses travel up the back side of the cylinder and loops around in the cylinder head to scavenge out the burnt mixture gasses from the previous power stroke. It is critical that the burnt gasses are scavenged from the combustion chamber, in order to make room for as much unburned gasses as possible. That is the key to making more power in a two-stroke engine. The more unburned gasses you can squeeze into the combustion chamber, the more the engine will produce. Now the loop of unburned mixture gasses have traveled into the exhaust pipe's header section. The gasses aren't lost because a compression pressure wave has reflected from the end of the exhaust pipe, to pack the unburned gasses back into the cylinder before the piston closes off the port. This is the unique super-charging effect of two-stroke engines. The main advantage of two-stroke engines is that they can combust more volume of fuel/air mixture than the swept volume of the engine. Example: A 125cc four-stroke engine combusts about 110cc of F/A gasses but a 125cc two-stroke engine combusts about 180cc of F/A gasses.
3) Now the crankshaft has rotated past bottom dead center (BDC 180 degrees) and the piston is on the upstroke. The compression wave reflected from the exhaust pipe is packing the unburned gasses back in through the exhaust port as the piston closes off the port the start the compression phase. In the crankcase the pressure is below atmospheric producing a vacuum and a fresh charge of unburned mixture gasses is flowing through the reed valve into the crankcase.
4) The unburned mixture gasses are compresses and just before the piston reaches TDC, the ignition system discharges a spark causing the gasses to ignite and start the process all over again.


2 Stroke Tuning Software For Cars

The cylinder ports are designed to produce a certain power characteristic over a fairly narrow rpm band. Porting or tuning is a metal machining process performed to the cylinder ports (exhaust & transfers) that alters the timing, area size, and angles of the ports in order to adjust the power band to better suit the rider's demands. For example, a veteran trail rider riding an RM250 in the Rocky mountain region of the USA will need to adjust the power band for more low end power because of the steep hill climbs and the lower air density of higher altitudes. The only way to determine what changes will be needed to the engine is by measuring and calculating the stock engine's specifications. The most critical measurement is termed port-time-area. This term is a calculation of a port's size area and timing in relation to the displacement of the engine and the rpm. Experienced tuners know what the port-time-area values of the exhaust and transfer ports should be for an engine used for a particular purpose. In general, if a tuner wants to adjust the engine's power band for more low to mid range he would do the following things. Turn down the cylinder base on a lathe to increase the effective stroke (distance from TDC to exhaust port opening). This also retards the exhaust port timing and shortens the duration and increases the compression ratio. Next the transfer ports should be narrowed and re-angled with epoxy to reduce the port-time-area for an rpm peak of 7,000 rpm. The rear transfer ports need to be re-angled so they oppose each other rather than pointing forward to the exhaust port. This changes the loop scavenging flow pattern of the transfer ports to improve scavenging efficiency at low to mid rpm (2,000 to 5,000 rpm). An expert rider racing mx in England would want to adjust the power band of an RM250 for more mid to top end power. The cylinder would need to be tuned radically different than for trail riding.
Here is an example. The exhaust port would have to be raised and widened to change the port-time-area peak for a higher rpm (9,000 rpm). For either of these cylinder modifications to be effective, other engine components would also need to be changed to get the desired tuning effect.

Cylinder heads can be reshaped to change the power band. Generally speaking, a cylinder head with a small diameter and deep combustion chamber, and a wide squish band (60% of the bore area). Combined with a compression ratio of 9 to 1 is ideally suited for low to mid range power. A cylinder head with a wide shallow chamber and a narrow squish band (35-45% of bore area) and a compression ratio of 8 to 1, is ideally suited for high rpm power.
There are many reasons why a particular head design works for certain types of racing. For example; a head with a wide squish band and a high compression ratio will generate high turbulence in the combustion chamber. This turbulence is termed Maximum Squish Velocity, MSV is rated in meters per second (m/s). A cylinder head designed for supercross should have an MSV rating of 28m/s. Computer design software is used to calculate the MSV for head designs. In the model tuning tips chapters of this book, all the head specs quoted have MSV ratings designed for the intended power band changes.

2 Stroke Tuning Software Download


There are two popular mods hop-up companies are doing to crankshafts; stroking and turbo-vaning. Stroking means to increase the distance from the crank center to the big end pin center. There are two techniques for stroking crankshafts; weld old hole and re-drill a new big end pin hole, or by installing an off-set big end pin. The method of weld and re-drilling is labor intensive. The off-set pin system is cheap, non-permanent, and can be changed quickly. In general, increasing the stroke of a crankshaft boosts the mid range power but decreases the engine's rpm peak.
The term 'Turbo-Crank' refers to a modification to the crankshaft of a two-stroke engine, whereby scoops are fastened to the crank in order to improve the volumetric efficiency of the engine. Every decade some hop-up shop revives this old idea and gives it a trendy name with product promises that it can't live up to. These crank modifications cause oil to be directed away from the connecting rod and often times the vanes will detach from the crank at high rpm, causing catastrophic engine damage. My advice, don't waste money .


In general a small diameter carburetor will have high velocity and a good flow characteristic for a low to mid rpm power band. A large diameter carburetor works better for high rpm power bands. For 125 cc engines a 34mm carburetor works well for supercross and enduro and a 36 or 338 mm carburetor works best for fast mx tracks. For 250 cc engines a 36 mm carburetor works best for low to mid power bands and a 39.5 mm carburetor works best for top end power bands. Recently there has been a trend in the use of air-foils and rifle-boring for carbs. These innovations are designed to improve air flow at low throttle openings. Some companies sell carb inserts, to change the diameter of a carb. Typically a set of inserts is sold with a service of over boring the carb. For example; a carb for a 250cc bike (38mm) will be bored to 39.5mm and two inserts will be supplied. The carb can then be restricted to a diameter of 36 or 38mm.


Think of a reed valve like a carburetor, bigger valves with large flow-areas work best for high rpm power bands. In general, reed valves with six or more petals are used for high rpm engines. Reed valves with four petals are used for dirt bikes that need strong low end and mid range power. There are three other factors to consider when choosing a reed valve. The angle of the reed valve, the type of reed material, and the petal thickness. The two common reed valve angles are 30 and 45 degrees. A 30-degree valve is designed for low to mid rpm and a 45 degree valve is designed for high rpm. There are two types of reed petal materials commonly used, carbon fiber and fiberglass. Carbon fiber reeds are lightweight but relatively stiff (spring tension) and designed to resist fluttering at high rpm. Fiberglass reeds have relatively low spring tension so they instantly respond to pressure that changes in the crankcase, however the low spring tension makes them flutter at high rpm thereby limiting the amount of power. Fiberglass reed petals are good for low to mid power bands and carbon fiber reeds are better for high rpm engines.
Boyesen Dual Stage reeds have a large thick base reed with a smaller thinner reed mounted on top. This setup widens the rpm range where the reed valve flows best. The thin reeds respond to low rpm and low frequency pressure pulses. The thick reeds respond to higher-pressure pulses and resist fluttering at high rpm. A Boyesen RAD valve is different than a traditional reed valve. Bikes with single rear shocks have off-set carbs. The RAD valve is designed to redistribute the gas flow to the crankcases evenly. A RAD valve will give an overall improvement to the power band. Polini of Italy makes a reed valve called the Supervalve. It features several mini sets of reeds positioned vertically instead of horizontally like conventional reed valves. These valves are excellent for enduro riding because of improved throttle response. In tests on an inertia chassis dyno show the Supervalve to be superior when power shifting. However these valves don't generate greater peak power than conventional reed valves. Supervalves are imported to America and sold by Moto Italia in Maine.


The exhaust pipe of a two-stroke engine attempts to harness the energy of the pressure waves from combustion. The diameter and length of the five main sections of a pipe, are critical to producing the desired power band. The five sections of the pipe are the head pipe, diffuser cone, dwell, baffle cone, and the stinger. In general, after market exhaust pipes shift the power band up the rpm scale. Most pipes are designed for original cylinders not tuned cylinders. Companies like MOTOWERKS custom computer design and fabricate pipes based on the cylinder specifications and the type of power band targeted.


Silencers come in all sorts of shapes and sizes. A long silencer with a small diameter enhance the low to mid power because it increases the bleed-down pressure in the pipe. A silencer with a short length and a large core diameter provides the best bleed-down pressure for a high rpm engine. Too much pressure in the pipe at high rpm will radically increase the temperature of the piston crown and could cause the piston to seize in the cylinder.


FLYWHEEL WEIGHTS
The flywheel is weighted to improve the engine's tractability at low to mid rpms. There are two different types of flywheel weights, weld-on and thread-on. A-Loop performs the weld-on flywheel weight service. Steahly makes thread-on flywheel weights. This product threads onto the fine left-hand threads that are on the center hub of most Japanese magneto rotors. normally the threads are used for the flywheel remover tool. Thread-on flywheel weights can only be used if the threads on the flywheel are in perfect condition. The advantage to weld-on weights is they can't possibly come off.
External rotor flywheels have a larger diameter than internal rotor flywheels so they have greater flywheel inertia. Internal rotor flywheels give quicker throttle response.


AFFECTS OF THE IGNITION TIMING
Here is how changes in the static ignition timing affects the power band of a Japanese dirt bike. Advancing the timing will make the power band hit harder in the mid range but fall flat on top end. Advancing the timing gives the flame front in the combustion chamber, adequate time to travel across the chamber to form a great pressure rise. The rapid pressure rise contributes to a power band's 'Hit'. In some cases the pressure rise can be so great that it causes an audible pinging noise from the engine. As the engine rpm increases, the pressure in the cylinder becomes so great that pumping losses occur to the piston. That is why engines with too much spark advance or too high of a compression ratio, run flat at high rpm.
Retarding the timing will make the power band smoother in the mid-range and give more top end over rev. When the spark fires closer to TDC, the pressure rise in the cylinder isn't as great. The emphasis is on gaining more degrees of retard at high rpm. This causes a shift of the heat from the cylinder to the pipe. This can prevent the piston from melting at high rpm, but the biggest benefit is how the heat affects the tuning in the pipe. When the temperature rises, the velocity of the waves in the pipe increases. At high rpm this can cause a closer synchronization between the returning compression wave and the piston speed. This effectively extends the rpm peak of the pipe.
HOW TO ADJUST THE TIMING
Rotating the stator plate relative to the crankcases changes the timing. Most manufacturers stamp the stator plate with three marks, near the plate's mounting holes. The center mark is the standard timing. If you loosen the plate mounting bolts and rotate the stator plate clockwise to the flywheel's rotation, that will advance the ignition timing. If you rotate the stator plate counterclockwise to the flywheel's rotation, that will retard the ignition timing. Never rotate the stator plate more than .028in/.7mm past the original standard timing mark. Kawasaki and Yamaha stator plates are marked. Honda stators have a sheet metal plate riveted to one of the mount holes. This plate insures that the stator can only be installed in one position. If you want to adjust the ignition timing on a Honda CR, you'll have to file the sheet metal plate, with a 1/4in rat-tail file.
AFTERMARKET IGNITIONS
The latest innovation in ignition systems is an internal rotor with bolt-on discs that function as flywheel weights. PVL of Germany makes these ignitions for modern Japanese dirt bikes. Another advantage to the PVL ignition is that they make a variety of disc weights so you can tune the flywheel inertia to suit racetrack conditions.
MSD is an aftermarket ignition component manufacturer. They are making ignition systems for CR and RM 125 and 250. MSD's ignition system features the ability to control the number of degrees of advance and retard. These aftermarket ignition systems sell for less than the OEM equivalent.


In the mid nineties, European electro-plating companies started service centers in America. This made it possible to over bore cylinders and electro-plate them to precise tolerances. This process is used by tuners to push an engine's displacement to the limit of the racing class rules, or make the engine legal for a different class.
When you change the displacement of the cylinder, there are so many factors to consider. Factors like; port-time-area, compression ratio, exhaust valves, carb jetting, silencer, and ignition timing. Here is an explanation of what you need to do when planning to over bore a cylinder.
Port-Time-Area - This is the size and opening timing of the exhaust and intake ports, versus the size of the cylinder and the rpm. When increasing the displacement of the cylinder, the cylinder has to be bored to a larger diameter. The ports enter the cylinder at angles of approximately 15 degrees. When the cylinder is bore is made larger, the transfer ports drop in height and retard the timing and duration of those ports. The exhaust port gets narrower. If you just over bored and plated a cylinder, it would have much more low end power than stock. Normally tuners have to adjust the ports to suit the demands of the larger engine displacement. Those exact dimension changes can be determined with TSR's Time-Area computer program.
Cylinder Head - The head's dimensions must be changed to suit the larger piston. The bore must be enlarged to the finished bore size. Then the squish band deck height must be set to the proper installed squish clearance. The larger bore size will increase the squish turbulence so the head's squish band may have to be narrowed. The volume of the head must be increased to suit the change in cylinder displacement. Otherwise the engine will run flat at high rpm or ping in the mid range from detonation.
Exhaust Valves - When the bore size is increased, the exhaust valve to piston clearance must be checked and adjusted. This pertains to the types of exhaust valves that operate within close proximity of the piston. If the exhaust valves aren't modified, the piston could strike the valves and cause serious engine damage.
Carb - The piston diameter and carb bore diameter are closely related. The larger the ratio between the piston size and the carb size, the higher the intake velocity. That makes the jetting richer. Figure on leaning the jetting after an engine is over bored.
Ignition Timing - The timing can be retarded to improve the over rev. Normally over bored engines tend to run flat on top end.
Pipe and Silencer - Because only the bore size is changed, you won't need a longer pipe only one with a larger center section. FMF's line of Fatty pipes work great on engines with larger displacement. Some riders use silencers that are shorter with larger outlets to adjust the back-pressure in the pipe for the larger engine displacement.

The new MOTA V6.30for Windows
The world's leading 2-stroke engine simulation software now runs on your Windows PC.
MOTA for Windows SLIDE SHOW OF FEATURES
Millions Of Tuning Variations Possible
Design Exhausts That WorkDesign Engine Porting
Full Cycle SimulationDisplay HP & Torque Curves
Accepts 3.5cc To 500cc EnginesRuns 500 to 30000 RPM

ONLY

  • With in Australia $A261.50 inc GST POSTAGE PAID
  • 2 Stroke Tuning Software

    Software For Tuning Cars

  • Outside of Australia $251.50AUD Airmail POSTAGE PAID. Exported to MOST countries
    (For Cost In Your Currency Click ON Amount)

  • The latest MOTA version 6.30 is an evolution of the V6.10 that includes some fabulous new tools.
    Power/Torque Curves Cursor Bar
    The display of Power/Torque curves has been enhanced by the inclusion of a vertical cursor bar which extends over the entire height of the plotting area and whose position can be controlled by the mouse. Where the bar intersects each curve a horizontal cursor is drawn and, to the right of the plotting area, the corresponding power and torque values and the engine speed are displayed.

    Additions to the Expansion Chamber Construction Utilities
    The Expansion Chamber Construction utilities have been extended considerably and are now accessed under a separate item on the Main MOTA Menu. A sub-menu offers the two selections 'Constructing the Development Pattern of a Cone' and 'Printing the Development Pattern of a Cone'. It is the options provided under the second selection which have been added to MOTA. You can now print the development pattern of a cone and this may extend over several A4 pages. Of particular note, you can produce the pattern of a cone having either end or both ends angled to the cone axis. A set of explanatory diagrams with text can be displayed. You may also define a single straight cone and print the patterns of each of the pieces which, when welded together, will provide an equivalent bend section. The number of pieces and the overall bend angle are entered through the keyboard. A MOTA engine data file may also be accessed and the pattern of each section of the expansion chamber printed. Alternatively, any one section may be selected and patterns suitable for the construction of an equivalent bend section printed This new feature allowing creation and printing of Expansion Chamber sections

    We now have a simple 2 stroke expansion chamber design program.FREEdownload here
    This program is not a part of MOTA, but it has been put together by the same engineers as a starting point for those wishing to begin from scratch. It calculates the dimensions for both double and triple stage diffuser expansion chambers from a few basic engine dimensions. The information used in the program's calculations was taken from the books â€ËœThe Basic Design of the Two Stroke Engineâ€â„¢ and the book â€ËœDesign and Simulation of Two Stroke Enginesâ€â„¢; both books are written by Professor G.P. Blair of Queens University Belfast, and published by the Society of Automotive Engineers. You are well advised to read at least one of the books mentioned above, since they contain the authorâ€â„¢s academic lifetime of knowledge on the two-stroke engine.
    There are several coefficients used in the design of the expansion chamber â€â€œ these are a function of the engineâ€â„¢s state of tune. Those used in this program have been chosen for petrol engines, and are in the range 50cc up to about 500cc per cylinder. It is doubtful these formulae would work on small capacity glowplug engines, since the exhaust gas temperature is much lower, and the engine speed is much higher.

    How it all began....
    MOTA® is the brainchild of Dr Julian Van Leersum, mathematics graduate from Monash University in Melbourne, Victoria. He is of Dutch/Swiss parentage, but now permanently resident in Australia.

    With the successful MOTA® software, Dr Van Leersum has managed to combine his professional interests in computing & mathematics with his enthusiasm for karting and motorcycle racing. Vatsyayana positions pdf.

    'It occurred to me that most home tuners cannot afford the expense of hiring time on a dynamometer to check the viability of adjustments or special parts' said Julian, 'yet many people these days have a home computer which could easily run a suitably designed tuning programme.'

    'Although there is really no shortage of Books on the subject of 2-stroke tuning and preparation, I knew that an active software programme would be able to offer so much more.' So, this is how MOTA® was conceived.

    MOTA is an engine simulation program suitable for everyone from the enthusiast to the university researcher - from the beginner racer to the professional tuner. See testimonials. You can test your own engine and then re-test and compare your modifications - or build your ultimate engine right on the screen. Millions of fluid and thermo-dynamic calculations are made by MOTA representing the conditions inside your two-stroke engine throughout it's complete operating cycle.

    No previous knowledge of the two-stroke cycle engine is required - just input the required data and then run MOTA to set in motion this powerful process. Test your own theories on porting and exhaust pipe design; explore the limits of various intake methods; or just look for the highest power output from your own engine.

    MOTA will accept a single-cylinder design, which will also cater for many multi's where 2, 3 or more cylinders of the same basic layout are repeated. Easy-to-operate, accurate and hours of fascinating results to enjoy! Excellent graphics you can analyse and compare. MOTA's 'Two-stroke Dyno' will give you and your PC the equivalent of many experts knowledge.

    MOTA and it's related set of programs have been developed to simulate the performance of high-output single cylinder two-stroke engines. It will simulate one of the cylinders of a multi-cylinder two-stroke engine provided that the cylinders are identical in layout and dimensions and each cylinder has a seperate exhaust and induction system. It allows simulation of engines with reed-valve, rotary-valve and piston port timed induction systems. Simulation of engines with either a box-silencer or an expansion chamber is also possible.

    Because MOTA solves the equations describing the conservation of fluid and thermodynamic properties throughout an engine, it requires specification of the full engine geometry. This is accomplished through a menu driven environment, which prompts you for the required dimensions which are easily entered via the keyboard. Install flash player 11 active x msi download.

    The output from MOTA is provided in two forms; a file, which summarises the engine geometry and performance, and a graphical interface which allows you to plot the various performance variables. The output file and these plots can be printed if you have a printer connected to your computer.

    How MOTA works for you
    The strength in MOTA lies not so much in it's ability to predict accurately the performance of an engine, but in it's ability to allow evaluation of two different engine configurations. For example, if you have the MOTA produced power curve for an engine, and you want to see if modifying one of the exhaust pipe dimensions will increase or decrease power, then you can change the particular dimension and re-run the MOTA simulator. Comparison of the new power curve with the old will allow you to determine whether or not the change will be worth making.

    Where is MOTA different to other computer programs and tuning manuals - and what can it do?

      MOTA operates in the 'real world' and it will
    1. Accept most any dimension and variations of dimensions
    2. Operate on anyone's exhaust pipe theory by accepting almost all shapes
    3. Operate within the limitations set under certain racing regulations. i.e. A KT100S kart engine in Australia cannot be 'ported' - so the ports physical dimensions cannot be modified. MOTA will run on your own inputted physical dimensions, but allow the alteration of port timings without other physical variations
    4. Accept that the data you input is from an engine that is running already, and will output it's predicted performance as a base for you to work from
    5. Accept alteration to one engine dimension at a time - either real or imagined, and produce all of the new outputs with the new dimension.
    6. Accept that ignition timing can be varied, and allows you to input such changes - possible or not, you can make the alteration to see what would happen
    7. Does not ask complex technical questions - data inputs are easily measured and entered on the screen via the keyboard.
    8. Accept almost limitless variations, so you can test ideas beyond any current theories or practises.
    So how does this help you?
    Most everyone will have an actual engine that they wish to play with, or make perform better. MOTA can do that easily and quickly. It does not trouble you with the in-depth why's and wherefore's of two-stroke engine design theory - you are not trying to build an engine from scratch. You can do one alteration, or many, and MOTA works with that.

    Some karting race results with MOTA.
    The current IWT 'MR1' pipe for long circuit karting in the 100cc Non-gearbox class was designed using MOTA. -- and it won the 2001 National Superkart Championship for our own team member Michael Rogers. It is an evolution of all of our earlier designs, that for the past 5 years have seen multiple state championships come our way, and at most meetings qualify at the front of the pack !!

    The Mallala lap record for the 100cc Yamaha heavy class is now in the possession of Ian Williams, using this pipe as designed with the aid of MOTA.

    The late model crankcase reed induction Yamaha YZ80 engine was 'tuned' for Superkart racing using MOTA. to redesign the porting and design a new reed and exhaust system -- before the first engine had even been run !! From the first time these engines hit the track they have been winning right across Australia.

    The exhaust design for this has been used to win multiple State and National Championships, as well as the reed design now being used as 'the' setup for all karts run in this class across Australia today.

    Sample Outputs from MOTA version 6.00 for Windows®.

    FOR MORE INFORMATION REFER TO THE MOTA USER MANUALA HTML FILE

    MOTA Operating System Requirements

    Microsoft Windows 2000, Me, NT , XP, Vista or Win 7 or 8 ( 32 or 64 bit ) operating system
    A minimum of 20MB RAM, VGA colour display and 40MB of free hard disk space. minimum 233mHz Pentium or equivalent
    CD disk drive.
    Microsoft Windows compatible mouse and keyboard required.
    Printer is optional - only needed to produce hard copies of output graphics and files.
    USB Port - ( USB hardware security lock ( dongle ) included in program package )

    Special features include

    1. Suitable for Kart, Motorcycle, chainsaw, personal watercraft, Model Aero and most similar engines.
    2. Accepts most expansion chamber designs.
    3. Methanol or petrol fuels accepted.
    4. Will test almost any reed valve material.
    5. Ignition timing can be varied, and 'curves' accepted.
    6. Integrated, box type or separate muffler designs accepted.
    NEW - NEW Now available a small program with port angles versus piston displacements that you can input your own data and print out an A4 page with the results. This will help with setting up engines for classes like AKA Clubman or National with the KT100 Yamahas. Download/Read about it here .
    PURCHASING
    AUSTRALIA $A261.50 inc GST - POSTAGE PAID within Australia
    OVERSEAS. $251.50 AUD Airmail POSTAGE PAID Exported to most Countries
    (For Cost In Your Currency Click ON Amount)
    HOW TO ORDER
    Pay Pal- Visa- Mastercard YOU WILL NEED TO BE ONLINE
    Phone Your Order +618 OR 08 8298 5548 All Credit Cards
    BACK © 2012 Beven D Young All rights reserved

    Free currency conversion